ADI Finite Element Method for 2D Nonlinear Time Fractional Reaction-Subdiffusion Equation
نویسندگان
چکیده
In this paper, an alternating direction Galerkin finite element method is presented for solving 2D time fractional reaction sub-diffusion equation with nonlinear source term. Firstly, one order implicit-explicit method is used for time discretization, then Galerkin finite element method is adopted for spatial discretization and obtain a fully discrete linear system. Secondly, Galerkin alternating direction procedure for the system is derived by adding an extra term. Finally, the stability and convergence of the method are analyzed rigorously. Numerical results confirm the accuracy and efficiency of the proposed method.
منابع مشابه
The Use of Finite Difference/Element Approaches for Solving the Time-Fractional Subdiffusion Equation
In this paper, two finite difference/element approaches for the time-fractional subdiffusion equation with Dirichlet boundary conditions are developed, in which the time direction is approximated by the fractional linear multistep method and the space direction is approximated by the finite element method. The two methods are unconditionally stable and convergent of order O(τq + hr+1) in the L2...
متن کاملAn Implicit Difference-ADI Method for the Two-dimensional Space-time Fractional Diffusion Equation
Fractional order diffusion equations are generalizations of classical diffusion equations which are used to model in physics, finance, engineering, etc. In this paper we present an implicit difference approximation by using the alternating directions implicit (ADI) approach to solve the two-dimensional space-time fractional diffusion equation (2DSTFDE) on a finite domain. Consistency, unconditi...
متن کاملNumerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion
In this paper, we study the time–space fractional order (fractional for simplicity) nonlinear subdiffusion and superdiffusion equations, which can relate the matter flux vector to concentration gradient in the general sense, describing, for example, the phenomena of anomalous diffusion, fractional Brownian motion, and so on. The semi-discrete and fully discrete numerical approximations are both...
متن کاملAn implicit compact finite difference method for the fractional reaction-subdiffusion equation
In this article, a high order implicit compact difference method for the fractional reaction-subdiffusion equation is presented. The difference scheme is unconditionally stable and the truncation error is of first order in time and forth order in space. A numerical example is included to demonstrate the validity of theoretical results and efficiency of the scheme.
متن کاملNumerical Algorithms for Time - Fractional Subdiffusion
This article aims to fill in the gap of the second-order accurate schemes for the time-fractional subdiffusion equation with unconditional stability. Two fully discrete schemes are first proposed for the time-fractional subdiffusion equation with space discretized by finite element and time discretized by the fractional linear multistep methods. These two methods are unconditionally stable with...
متن کامل